
CS 4530: Fundamentals of Software Engineering
Lesson 4.4: Debugging

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson you should be able to:

• Understand the value of scientific debugging
• Enumerate general debugging strategies beyond “google

it” or “turn it off and on again”

2

It is possible to “get better”
at debugging
• Debugging is NOT just “googling the error

message”
• Some developers are better at debugging

than others
• The overall goal in this lesson is to teach

you about different strategies for
debugging, how to decide which strategy
to apply, and how to view debugging as a
science

3

General Strategy: Enable Efficient
Reproduction of the Problem
• If you haven’t fixed the bug yet, it’s likely you will

need to execute the program many times, tweak
things, and see what happens

• Create the fastest test case possible to reproduce
the bug:

• Consider starting “top-down” from the application’s
entry point, or “bottom-up” by directly invoking some
buggy code

• Ensure that it is self-contained
• Minimize turnaround time from changes to result:

• Make sure that you can quickly recompile your code and
run the test

4

General
Strategy:
Scientific
Debugging

• Create a debugging log:
• What was the input/application state

that caused the bug?
• What was the behavior that I

expected?
• What was the behavior that I

observed?
• What are possible hypotheses for that

behavior?
• How have I tested those hypotheses,

and what was the result?

• Do this in an issue tracker, or even
in a personal note

5

Generating Hypotheses: Why is this buggy?
• Good hypotheses are testable
• Start with a few hypotheses, and let your inquiry

drive the generation of new hypotheses
• Determine if you need to know exactly why the bug

occurred, or fixing it is good enough
• Has recent code that I’ve added introduced this

bug?
• Have I seen a similar bug before?
• Have I made an incorrect assumption about how a

library or API works?

6

High-Level Debugging and Hypothesis
Generating Strategies
• Use focused queries on the web to search for

insights
• Confirm that (assumed) preconditions actually hold
• Find the difference between a working and failing:

• Version of your code
• Inputs to your code
• Environments where your code runs

7

“Is there an
updated
version of
this library?”

• Consider updating all dependencies, or just those related to bug

• Be prepared to revert to old versions if needed

• For NodeJS:
• rm -rf node_modules && rm -rf package-lock.json
&& npm install

8

Reasoning
Through Code

9

Use A Debugger

• Helps narrow down on the code that interests you

• Set breakpoints

• Look for errors by examining values of variables and expresisons

• Get comfortable with the keyboard commands to quickly interact with
the debugger

10

Add Logging Statements
• Add log messages to help you

understand the program’s
execution

• Particularly useful for non-
deterministic bugs
(“heisenbugs”), or bugs that
involve many systems
interacting

• Consider using a logging library
to help you trace the source of
each log message – log
messages are a useful artifact
for future debugging

11

Successfully reuqested job
JWT token might be expired, renewing
Renewing JWT token
Renewing JWT token: success
Received runner launch request:
{

" gitHubURL ": "https:// github.com /neu - se/ covey.town ",
" launcherToken ": " asdfasdfasdfadsfwerasdfsdf ",
" runnerLabels ": "self - hosted"

}
-- unattended -- replace -- url https:// github.com /neu - se / covey.town -- token
$GHTOKEN -- ephemeral -- work gha_work -- labels 'self - hosted'
Making request to slurm :
{"script":"#!/bin/bash \ nfunction checkForRunning (){ \ n sleep
120 \ n RUNNING=$(grep Running / tmp / gha - stdout | wc - l) \ n if [$RUNNING - eq 0
]; then \ n echo \ "Does not look like GHA found a job to work
on! \ " \ n kill $$ \ n fi \ n} \ nset - x\ nhostname \ nexport HOME=/tmp /home/ci -
runner \ necho \ "GHA Runner is loading... \ " \ necho $HOME\ ncd $HOME\ npwd\ nmkdir
gha \ ncd gha \ ncp /experiment/util/actions - runner - linux - x64 - 2.285.1.tar.gz
. \ ntar xzf actions - runner - linux - x64 -
2.285.1.tar.gz \ nTOKEN=asdfasdfasdfadsfwerasdfsdf \ nGHTOKEN=$(curl - s - X POST -
H \ "Authorization: $TOKEN \ " https:// ci.in.ripley.cloud / gha/runner | jq - r
'.token') \ necho -- unattended -- replace -- url https:// github.com /neu -
se/ covey.town -- token $GHTOKEN -- ephemeral -- work gha_work -- labels 'self -
hosted' \ n./ config.sh -- unattended -- replace -- url https:// github.com /neu -
se/ covey.town -- token $GHTOKEN -- ephemeral -- work gha_work -- labels 'self -
hosted' \ ncheckForRunning &\ n./ run.sh \ n","job ":{" comment":"GitHub Actions
Builder for https:// github.com /neu -
se/covye.town","name":"GitHubActions","ntasks":1,"partition":"gha","standard_
output":"/ tmp / gha- stdout "," standard_error ":"/ tmp/ gha-
stderr"," current_working_directory ":"/ tmp","environment":{" fooo ":"bar"}}}

Write Automated Tests
• Encode the minimal steps to reproduce the bug and

the expected result in a test
• Simplifies reproduction and evaluating fixes
• Detects regressions

12

describe('Create student', () => {
it('should return a valid ID', async () => {
const createdStudent = await client.addStudent('Avery');
expect(createdStudent.studentID).toBeGreaterThan(0);

});
})

Example test that might be useful if this input revealed a bug in student ID generation

Add Assertions
• Capture what you think the state of your program

should be in assertions
• Assertions are a form of documentation
• Common assumptions to check:

• Pre-conditions and post-conditions of functions
• After calls to APIs that are expected not to fail
• After loading remote resources
• After evaluating complex expressions to make sure that

the result has some expected property or is otherwise
reasonable

• In the “default” case of a switch statement

13

Use a specialized debugging tool

14

$ valgrind ./main
==8515== Memcheck, a memory error detector
==8515== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==8515== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==8515== Command: ./main
==8515==
==8515== Conditional jump or move depends on uninitialised value(s)
==8515== at 0x400813: fail() (main.cpp:7)
==8515== by 0x40083F: main (main.cpp:13)
==8515==
==8515== Invalid read of size 4
==8515== at 0x400819: fail() (main.cpp:8)
==8515== by 0x40083F: main (main.cpp:13)
==8515== Address 0x0 is not stack'd, malloc'd or (recently) free'd
==8515==
==8515==
==8515== Process terminating with default action of signal 11 (SIGSEGV): dumping core
==8515== Access not within mapped region at address 0x0
==8515== at 0x400819: fail() (main.cpp:8)
==8515== by 0x40083F: main (main.cpp:13)
==8515== If you believe this happened as a result of a stack
==8515== overflow in your program's main thread (unlikely but
==8515== possible), you can try to increase the size of the
==8515== main thread stack using the --main-stacksize= flag.
==8515== The main thread stack size used in this run was 8388608.
==8515==
==8515== HEAP SUMMARY:
==8515== in use at exit: 72,704 bytes in 1 blocks
==8515== total heap usage: 1 allocs, 0 frees, 72,704 bytes allocated
==8515==
==8515== LEAK SUMMARY:
==8515== definitely lost: 0 bytes in 0 blocks
==8515== indirectly lost: 0 bytes in 0 blocks
==8515== possibly lost: 0 bytes in 0 blocks
==8515== still reachable: 72,704 bytes in 1 blocks
==8515== suppressed: 0 bytes in 0 blocks
==8515== Rerun with --leak-check=full to see details of leaked memory
==8515==
==8515== For counts of detected and suppressed errors, rerun with: -v

$./main
Segmentation fault (core dumped)

https://www.valgrind.org/info/tools.html

Example: Valgrind for C/C++ Memory Errors

Set Yourself Up For Debugging Success
• Invest in growing your experience of applying these

debugging strategies
• For complex problems:

• Consider each of these debugging strategies
• Use a notebook to keep track of what you’ve tried
• Take a break! Do not spend more than a few hours at a

time in a debugging session
• Be persistent

15

Review: Learning Objectives for this Lesson
• By the end of this lesson you should be able to:

• Understand the value of scientific debugging
• Enumerate general debugging strategies beyond “google

it” or “turn it off and on again”

16

	CS 4530: Fundamentals of Software Engineering�Lesson 4.4: Debugging
	Learning Objectives for this Lesson
	It is possible to “get better” at debugging
	General Strategy: Enable Efficient Reproduction of the Problem
	General Strategy: Scientific Debugging
	Generating Hypotheses: Why is this buggy?
	High-Level Debugging and Hypothesis Generating Strategies
	“Is there an updated version of this library?”
	Reasoning Through Code
	Use A Debugger
	Add Logging Statements
	Write Automated Tests
	Add Assertions
	Use a specialized debugging tool
	Set Yourself Up For Debugging Success
	Review: Learning Objectives for this Lesson

